Effect of osteoconductive hyaluronate hydrogels on calvarial bone regeneration

نویسندگان

  • Junseok Yeom
  • Byung Woo Hwang
  • Dong Jun Yang
  • Hong-In Shin
  • Sei Kwang Hahn
چکیده

BACKGROUND Without exploitation of possibly immunogenic and carcinogenic bone morphogenetic protein, we developed simple but clinically feasible artificial bone graft using osteoconductive hyaluronate (HA) hydrogels and bioactive MegaGen synthetic bone (MGSB). METHODS HA hydrogels were synthesized by the crosslinking reaction between carboxyl groups of HA and amine groups of gelatin (GEL). Then, artificial bone grafts were prepared by mixing MGSB with HA-GEL hydrogels. The bone regeneration by the MGSB/HA-GEL hydrogel complex was assessed in the skull of New Zealand white male rabbits in 4 and 8 weeks. RESULTS HA hydrogels were synthesized by the crosslinking reaction between carboxyl groups of HA and amine groups of gelatin (GEL). Then, artificial bone grafts were prepared by mixing MGSB with HA-GEL hydrogels. In vitro proliferation of preosteogenic cells was enhanced with increasing molecular weight of HA. In addition, histological analysis of dissected tissues with hematoxylin and eosin staining confirmed the effective in vivo bone regeneration by the MGSB/HA-GEL hydrogel complex. The MGSB/HA-GEL hydrogels were well resorbed and partially substituted to the lamellar bone after implantation for 8 weeks. CONCLUSIONS The novel artificial bone graft of MGSB/HA-GEL hydrogel complex for effective bone regeneration might be clinically feasible for further development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Bone Substitute of MGSB and Hyaluronate Hydrogels

A novel artificial bone substitute composed of bioactive MegaGen synthetic bone (MGSB) and hyaluronate (HA) hydrogels was successfully developed for bone tissue engineering applications. HA is known to play important roles in bone regeneration due to its angiogenic and osteoconductive characteristics. Accordingly, HA hydrogel was designed to supply HA continuously for effective bone regeneratio...

متن کامل

Synchrotron X-ray bioimaging of bone regeneration by artificial bone substitute of MegaGen Synthetic Bone and hyaluronate hydrogels.

Synchrotron X-ray bioimaging was successfully carried out to observe bone regeneration by a novel artificial bone substitute of bioactive MegaGen Synthetic Bone (MGSB) and hyaluronate (HA) hydrogels. A biphasic calcium phosphate of MGSB was prepared by chemical precipitation method, with a porous spherical morphology. On the basis of the fact that HA plays important roles in bone regeneration a...

متن کامل

The effect of freeze-dried bone allograft and partially demineralized freeze-dried bone allograft on regeneration of rabbit calvarial bone defects: A Histological and histomorphometric study

Background and Aims: Reconstruction of osseous defects is one of the ideal goals of periodontal treatments and dental implant therapy. Different biomaterials have been used for this purpose and many studies have tried to compare and introduce the best ones. The present study aimed to evaluate the effect of PDFDB (Partially Demineralized Freeze-Dried Bone Graft) and FDBA (Freeze Dried Bone Allog...

متن کامل

Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid) microspheres (SIM/PLGA) that slowly release simvastatin and enhance fracture healing. ...

متن کامل

Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit.

The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2014